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Abstract—The differential form of the “two-fluid model” for annular flow, neglecting surface tension, is
ill-posed, and it is not suited for examining the stability of the steady-state solutions with respect to the
average film thickness. It is shown here that a discrete (difference) representation of the two-fluid model
may lead to an appropriate criterion for the stability of the steady-state solutions. Exactly the same
criterion is obtained from the requirement that the kinematic waves will propagate in the downstream
direction. The suggested discrete form of the “two-fluid model” is used to perform transient simulation
and for examining the system response to finite disturbances.
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INTRODUCTION

The simplest and most effective method for calculating pressure drop and film thickness for
steady-state annular flow is to use the integral approach which treats the gas and liquid as two
separated fluids with a spatially uniform cross-sectional area. Effective wall and interfacial shear
stresses are required to account for the wavy structure of the liquid film. The solution of this
steady-state model may yield multiple steady-state solutions, some of which are unstable.

The transient formulation which is consistent with the aforementioned steady-state solutions is
provided by the “two-fluid model” in which surface tension and gravity are neglected. This
transient equation system of the two-fluid model possesses complex-valued characteristics and thus,
as is well known, it is not well-posed as an initial value problem. The complex characteristics
associated with these equations imply unbounded exponential growth (Lyczkowski et al. 1978;
Ramshaw & Trapp 1978; Stewart & Wendroff 1984; Jones & Prosperetti 1987; Lin & Hanratty
1986, Banerjee 1985). This ill-posedness manifests itself as instability of the differential equations
and indeed, a linear stability analysis of annular flow using the two-fluid model, neglecting surface
tension, shows, as is well known, that the steady-state solutions are always unstable owing to the
Kelvin—Helmholtz (K-H) type instability (Ramshaw & Trapp 1978; Barnea & Taitel 1989).

Barnea & Taitel (1989, 1990) claimed that the full two-fluid model is not suitable to examine the
stability of steady annular flow, where the solution is obtained for an average film thickness using
effective interfacial shear stresses. This is because the existence of K-H instability in steady annular
flow is expected a priori and steady annular flow is dynamically unstable with regard to its interface,
resulting in an unstable wavy interface. However, our question of interest is whether this kind of
steady annular flow is a stable structure with respect to its average film thickness and average phase
velocities as obtained in the steady-state solutions. In order to answer this question Barnea & Taitel
(1989) suggested a few simplified dynamic formulations based on various assumptions. Common
to all assumptions is that all of them eliminate the Bernoulli amplification from the transient
equations. Using these dynamic formulations a linear stability analysis was performed, arriving at
a simple logical criterion for the stability of the multiple steady-state solutions. It seems that these
dynamic formulations are those that are suited to answer the question whether annular flow with
an unstable wavy interface is a stable structure that can be realized physically.

In the present work it will be shown that some results obtained from the viscous K-H analysis,
on the full two-fluid model, can be also used to arrive at the same criterion for stable steady-state
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solutions, as that obtained by the simplified transient formulations. In addition it will be
shown that the two-fluid model presented in a spatial discrete form (*“the cell model’”) also leads
to the aforementioned structure stability. Thus, although the transient two-fluid model with the
elimination of gravity and surface tension is ill-posed, it can be used to obtain logical transient
simulations which converge to the steady state which is stable according to the criterion presented
by Barnea & Taitel (1989).

LINEAR STABILITY ANALYSIS USING THE TWO-FLUID MODEL

The transient two-fluid model for annular flow, assuming incompressible flow and neglecting
surface tension is formulated by the following equations:
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A
where P is the pressure, ¢ is time, x is the coordinate in the flow direction, g is the acceleration
of gravity, A is the cross-sectional area, U is the axial average velocity, 7 is the wall shear stress,
1; is the interfacial shear stress, S and S, are the perimeters over which 7 and 7, act, ¢ is the phase
holdup, p is the phase density and f is the angle of inclination from the horizontal (positive for
upward flow). The subscripts L and G denote liquid and gas, respectively.
Eliminating the pressure drop from [3] and [4] yields
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7, is the interfacial shear stress needed for a steady-state flow for a given liquid velocity, U, , and
film thickness, &,
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and 7, is the shear stress provided by the gas, which depends on the gas velocity, Ug, and the film
thickness, 9,

(71
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For steady state 7, =1;.
A linear stability analysis of [1], [2] and [5] yields the following criterion for stability (Barnea
& Taitel 1989):
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The term Cy corresponds to the wave velocity at marginal stability (Barnea & Taitel 1989; Barnea
1991).

It is interesting to observe that the expression for Cy is also exactly the same as the kinematic
wave velocity presented by Wallis (1969) and Wu ez al. (1987):
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s

Cx = Cy. [12]
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Criterion [9] indicates that the flow is always unstable, since both terms on the L.h.s. are always
positive. This criterion is related to the well-known K-H instability when the shear stresses are
taken into account. It has been shown (Andreussi e? al. 1985; Barnea 1991) that as long as the liquid
supply in the film is sufficiently small to prevent blockage of the gas core the instability represented
in [9] results in large-amplitude roll waves on the film interface. Namely, criterion [9] indicates that
the interface of steady annular flow is always unstable.

However, our question of interest is whether this steady annular flow with its unstable wavy
interface is a stable structure with respect to the average film thickness obtained in the steady-state
solution. It is assumed here that in order to maintain the stable structure of annular flow the
characteristic velocity, Cx, must be compatible with upstream boundary conditions, namely for
co-current flow Cy(=Cy) should be positive. In the case when the kinematic waves are in the
opposite direction the general structure of the wavy liquid film will collapse, namely the steady-state
solution that was obtained for the average film thickness is physically unstable and will not exist.
Thus, for co-current gas-liquid flow where the liquid film velocity is positive the condition for
structural stability is:

CK = CR > 0. [1 3]
Since the denominator in [11] is always positive, the stability criterion for co-current flow is
oF
— >0 [14]
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For the case of counter-current flow where U, is negative a similar derivation yields:
ot o
Gl %L 5o, [16]
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These are exactly the same criteria as those obtained by Barnea & Taitel (1989) who used quite
different considerations and performed a linear stability analysis on a simplified transient
formulation.

Equations [15, 16] provide simple and general criteria for determining the linear stability of the
steady-state solutions. Note again, that these criteria point out whether the steady-state solution
is a stable structure with respect to its average film thickness. These criteria are easily applied by
using steady-state diagrams where t; is plotted vs d/D; D is the pipe diameter. Figure 1 is an
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Figure 1. Steady-state solutions and stability diagram. Air-liquid, 0.1 MPa, 25°C, 2.5 cm dia. —, 7, [7];
~-—— 1, [8), fi=0.05; ..., [8], f;=0.005 (1+3004/D).

example of such a diagram for vertical co-current annular flow, where two different correlations
for the interfacial shear stresses, 7;, are used. When a constant value of the interfacial friction factor
f; is used, multiple solutions may occur: two linearly stable solutions (points A and C) and one
unstable solution (point B). When Wallis’s (1969) correlation is used for f;, a single linearly stable
solution is obtained for any gas and liquid flow rate (points D or E). Barnea & Taitel (1990) have
shown that only solutions on the solid lines that are to the left of the minimum of the 7 vs é curve
are stable to finite disturbances.

In the next section it will be shown that a linear stability analysis of the discrete representation
of the “two-fluid model” will lead to exactly the same stability criterion for the annular structure
as that in [15] and [16].

THE DISCRETE REPRESENTATION—THE CELL MODEL

The discrete form of the set of partial differential equations [1]-{4], for the special case of the
quasi-equilibrium assumption in the gas, is established by dividing the pipe into n equal-sized cells.
Continuity and momentum balances are applied to each cell resulting in 2z ordinary differential
equations. The equations are derived with the advective terms approximated by ‘‘backward”
difference operators, namely information is travelling only in the downstream direction.

The resulting difference equations are (see the appendix):
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Equations [17]{20] are in the general form
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Linear stability requires that the eigenvalues of the following matrix at steady state are
all <0:
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The eigenvalues are found by equating the following determinant to zero:
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Note the special structure of this matrix—which has 2 x 2 matrices on the major diagonal and
all terms to the right of it are zero. It can be shown that the value of the determinant Ay, is the
product of the determinants of the 2 x 2 matrices on the diagonal. All the 2 x 2 matrices on the
diagonal are essentially identical with the exception of the first cell. This determinant will be
designated as A, and the others A;. The eigenvalues are the solution of

AM = AIA}’-’_I = 0, [24]
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equating A, and A; to zero results in the following equations for the eigenvalues:
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For stability, all values of 4 should be <. Since the coefficient of 4 in the quadratic equations
A, and A, is always positive, the requirement for negative 1 is satisfied when the zero-order term
of the quadratic equations are >0, namely
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The two last terms in [30] are positive, thus the need for ¢, > 0 satisfies also ¢;> 0, hence the
criterion for stability is
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ot ot
Fel S5 <o (33]
38]_ Urs aaL Ucs

This is exactly the same criterion as [15] which was obtained from the requirement of Cy > 0.
This result is expected since the discrete form of the differential equation is consistent with the
propagation of the kinematic waves in the downstream direction.

One of the simplified modes that has been suggested by Barnea & Taitel (1989) for analyzing
the stability of the steady-state solutions, assumes a uniform film thickness along the pipe. This
is a special case of the discrete form of the two-fluid model presented here, [17}-[20], where the
number of cells, n, equals 1.

It has been shown that a linear stability analysis of the discrete form of the two-fluid model leads
to a stability criterion, like that given in [15], independent of the number of cells. However, for
a very fine discretization, where n — oo and / - 0, the zero-order term ¢; of the quadratic equations
for the eigenvalues [30] may attain a large value, leading to large values of the imaginary part of
the eigenvalue. In this case, even if the steady state is stable (the real part of the eigenvalue is
negative) the convergence to steady state is oscillatory.

The discrete form of the two-fluid model, will be used now to perform transient numerical
simulations. These simulations can help us in analyzing the non-linear stability of the steady state
and examining the transient response of the system to finite disturbances. It is shown here that
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although the original set of differential equations is ill-posed, the suggested discrete form enables
one to perform transient numerical simulations around the steady-state solution and to get
numerical results which seem to be physically logical.

TRANSIENT SIMULATIONS

Dynamic numerical runs were carried out using the discrete form of the two-fluid model,
[17]1{20]. The transient simulations started at various deviations from the steady-state solutions,
and the initial conditions were the same in all the cells. The results at different positions along the
pipe are shown in figures 2-8. Two kinds of transient results are illustrated: (a) trajectories on a
U, vs ¢ plane; and (b) g vs time.

Figures 2-5 show the dynamic response of the system to finite disturbances, for the case where
a constant f; is used and three steady-state solutions are obtained (see figure 1). It is clearly seen
(figures 2-5) that the trajectories are attracted to the stable steady-state solution (A), even for
relatively large deviations from the steady state. The convergence is smooth and without
oscillations, in each of the cells along the pipe. A time delay in the response is noted as the
observation point is moved further downstream in the pipe (figures 3 and 5).

Solution B, which is linearly unstable, is a repellent point and trajectories move away from this
steady state even when the initial condition is exactly the steady-state value.

Point C, which was found to be linearly stable, is practically an unstable solution even for very
small disturbances. Figures 2—5 show the dynamic response for a small deviation from steady state
(C) for two values of the cell length (5 and 1 m). In the first cell, the system returns to steady state
through small oscillations. However, as one moves downstream along the pipe these oscillations
are amplified with substantial overshoots, where ¢ might exceed the value of 0.5 during the
transient response. This will practically block the pipe cross section resulting in the collapse of
annular flow. Note also that during the transient process the system passes through negative
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Figure 2. Dynamic simulations: U, vs¢ . Celllength/ =5m  Figure 3. Dynamic simulations: ¢ vs time. Cell length
(points A and C shown in figure 1). ! = 5m (points A and C shown in figure 1).
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Figure 4. Dynamic simulations: U, vs¢ . Celllength/=1m  Figure 5. Dynamic simulations: ¢ vs time. Cell length
(points A and C shown in figure 1). ! =1m (points A and C shown in figure 1).

liquid velocities which will destroy the structure of co-current annular flow. The finer the
discretization is, the more pronounced and closer to the pipe entrance are the oscillations (figures 4
and 5).

Similar transient simulations have been carried out for the steady-state points D and E in figure 1.
These steady states were obtained by using Wallis’s (1969) correlation for f;, and both, were found
to be linearly stable. The behavior of point D, which is on the branch to the left of the minimum
of the 1, vs & curve, is similar to point A. The trajectories are attracted to point D in each of the
cells along the pipe, for any grid size (figure 6). On the other hand, point E, although being linearly
stable, has the same peculiar character as point C. The system returns to steady state (E) through
substantial oscillations (figures 7 and 8) causing overshoots in the liquid holdup. Thus, practically
only steady-state solutions that correspond to the thinnest film thickness are expected to exist
(points A and D in figure 1).

SUMMARY AND CONCLUSIONS

The steady “two-fluid model” may yield multiple steady-state solutions for the average film
thickness and phase velocities in steady annular flow. Our question of interest is which of these
steady states are realized physically and will actually occur.

The respective transient formulation of the two-fluid model, [1}-[4], is ill-posed as an initial value
problem and a linear stability analysis using this model indicates that the steady-state solutions are
always unstable owing to the K~H nature of the instability. Namely, each solution of steady
annular flow is dynamically unstable with respect to the wavy interface, due to the absence of
gravitational stabilizing force.

However, our purpose is to study the stability of the structure of an annular flow with respect
to its average film thickness and average film velocities as obtained by the steady-state solutions.
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It is shown here that the difference representation of the two-fluid model leads to the appropriate
answer concerning the stability of the steady-state solutions. A linear stability analysis, using the
difference form of the two-fluid model yields a logical and simple criterion for the stability of the
steady-state solutions. This criterion is found to be consistent with the requirement that the K-H
waves on the interface propagate in the downstream direction.

While the set of differential equations of the two-fluid model is ill-posed, the suggested discrete
form can be used to carry out dynamic numerical simulations, which are used to examine the
transient behavior of the system and the stability of the steady-state equations. It was found that
only solutions that are associated with a thinner film are stable.

To summarize, one has to distinguish between the stability of the interface and the stability of
the steady-state solutions, where the solution is obtained for an average film thickness using
effective interfacial shear stresses. The stability of the interface is determined by a linear analysis
using the differential equations [1]-[4]. While the answer to the question whether annular flow at
a certain average film thickness is a stable structure is obtained by analysis of the discrete form
of the “two-fluid model”.

The relation between the stability of the steady-state solutions and the direction of propagation
of the interfacial K-H waves may shed some light on the well-known dilemma, that equations that
are ill-posed, can be used, in an appropriate scheme, to carry out transient simulations which
converge to the stable steady states.
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APPENDIX

The Numerical Cell Model

The pipe is subdivided into »n cells of equal length, /. The flow is assumed to be incompressible
with constant properties. Integral continuity and momentum balances are applied to the liquid and
gas for each cell.

For cell j (j > 1) the following conservation equations are obtained for the liquid film:

A ;
dr _pL(ULj 1Ag;o1 — U A4gy) [A1]
and
d(A4;; UL;) dpP .
le__—I(-th‘li‘ L(U AL] UIZ.,j—lALj—l) = '—ALJ(EZ‘)I - TLj SLjI+ rlijl _pLAL]Ig Sin ﬂ.
J

[A.2]

Since for the case of annular flow, the gas velocity is much faster than that of the liquid, the
quasi-equilibrium condition is assumed for the gas:

UGj—lAGj—l = UGjAGj= UGSA [A-3]
and
) ) dpr
pc(Ug Ag;— Ug;_14gi—1) = —Ag dx I —1;8;1 — pgAglg sin B. [A.4]
J

Inserting [A.1] into [A.2] and rearranging yields:
dULj — l <U%.j—1ALj—l _ ULj— 1 ULjALj— l) <dP) + leSy _ TLj SLj

—gsinf. [A.5]

ds ! Ay Ay, dz pLAL;  pLAy
Inserting [A.3] into [A.4] yields
1 1 1 dpP 7y Sy
Uis4 _— === sin A6
IPG GS (A A AGj—l) <d2>j AG, — Pc& B. [A.6]
Equating the pressure drop in [A.5] and [A.6] results in
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Expressing the geometrical quantities in [A.1] and [A.7] in terms of & = A, /A4 results in the
following differential equations for cell j:

d_éil = % (Urj-r6j-1 = Uyery) [A.8]
and
Ei% SZL ] Ut = Uy U )+ = Pe UIGS [(1 —leLj)2 - a= sLj_ll)(l — BLj):l
(=) [A9]
PLDﬁLj\/T———TLj Y !
where

prDey, 4

4t . N
m,-=[g<1 —%)sinﬂ L ]” cDeyy i (A.10]
G
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For the first cell, j =1, the boundary conditions should be taken into account resulting in
somewhat different equations. The contintuity and momentum equations for the liquid and gas are:

d
PLa (lAy) = pL(Uis4 — U Ay), [A.11]
d 5 dpP .
PLa (AL UL) + po UL AL — (Us A) Ul = — A4y, az I — 1, Syl + 1Syl — pL Ay, lg sin B
1
[A.12]
and
Ugi 46 = Ugs 4, [A.13]
2 dp .
p6lUG1 46t — (Ugs A)Ugin] = — 4 Az 11 — 1y Syl — pgAg g sin . [A.14]
The inlet velocities, Uy, and Ug,,, are taken as
Uy =—25
Ay
and
Ugs A
Ugin=—7— - [A.15]
Ag

Inserting [A.11] into [A.12] and [A.13] into [A.14] and equating the pressure drop in the gas and
the liquid yields

dUy,  Uy4 ( ULSA) TS |, Tu SLl( 1 1 > ( PG> .
+ Uy — = — + ——t——)—[1-"=|g sinf; A.l16
dr Ayl H Ay pLdu o \Au  Ada oL g sin [ ]

or in terms of the liquid holdup:

dULl ULS (ULS ) 4
—— ===l |+ —————(ty — Ti1)s A.17
dt lepy \ &Ly H pLDen /1 —¢, (= %a) [ ]
where
P . 4t |poDen/1 —sy,
Tqy = 1——Jsinf + . A.18
L1 [:g( PG) B pLD8L1:| 4 L ]
Equation [A.17] together with the following continuity equation,
de 1
'd—lt'l =7(ULS'—8L1 UL, [A.19]

are the representing equations for cell 1.



